a1b2c3
Die Arbeit beruht auf der Idee ein Video mit einem Minimum an Parametern zu gestalten. Ein regelmäßiges weißes Raster auf blauem Grund strukturiert die Bildfläche. Dieses bewegt sich in vier unterschiedlichen Geschwindigkeiten orthogonal nach links, rechts, oben und unten. Sämtliche Parameter der audiovisuellen Komposition beruhen auf den Relationen des Bildschirmformats von Digitalvideo: 720 x 576. Diese Zahlen bzw. Vielfache oder Teiler derselben definieren Geschwindigkeit und Länge der Animation. Der von Bernhard Lang komponierte Soundtrack folgt derselben Logik: die Frequenzen eines synthetisch generierten Rechtecksounds wurden anhand der gegebenen Zahlenwerte moduliert.
(Norbert Pfaffenbichler + Lotte Schreiber)
Weitere Texte
"Das Raster" von Gerald Weber (deutsch)
Das Raster
Wassily Kandinskys Satz, dass der Punkt der erste Zusammenstoß des Werkzeugs mit der Fläche sei und diese erst befruchte, gilt wohl auch für die Urszene der Computergrafik: Ein Kathodenstrahl trifft auf die Phosphorschicht einer Bildröhre und erzeugt einen leuchtenden Punkt. Als Mitte des 20. Jahrhunderts zum ersten Mal Punkte auf dem Screen einer Bildröhre, der so genannten Williams Tube aufleuchteten, ging es allerdings vorerst nicht darum, Bilder zu schaffen, sondern darum, die Bildröhren als schnelle und billige Arbeitsspeicher anzuwenden. Diese selbst waren in ein Raster aufgeteilt, an dessen einzelne Koordinaten der Elektronenstrahl Punkte oder eben keine Punkte setzte und damit singuläre Informationen speicherte. So wäre ein laufendes Programm als quadratisches Feld von einer Vielzahl an Punkten erschienen, die in mysteriösen Mustern aufleuchteten und verloschen, also so etwas wie ein abstraktes digitales Bewegungsbild lieferten.
Seit damals hat sich in der digitalen Bildgenerierung natürlich vieles getan (vorangetrieben von der Idee einer möglichst realen, natürlichen Abbildung konkreter Wirklichkeit), die grundsätzliche Komponente des Monitors als ein (unsichtbares) Raster-Feld, in dem sich mit nicht wahrnehmbarer Geschwindigkeit Lichtpunkte in unterschiedlicher Intensität entlang von horizontalen Linien auf- und wieder abbauen, blieb freilich erhalten.
Die Versuchsanordnung von Norbert Pfaffenbichlers und Lotte Schreibers knapp fünf Minuten dauernden Video A1B2C3 erscheint auf den ersten Blick denkbar einfach: ein monochromer Blue Screen wird mit einem rechtwinkeligen, weißen Gitter überlegt. Die daraus entstandenen Rechtecke entsprechen proportional dem Seitenverhältnis des Monitorbildes im gängigen Digitalvideo-Standard, also einem Maß von 720 x 576 Pixel.
Dieses Raster wird nun nach einem vorher festgelegten arithmetischen System jeweils abwechselnd entlang der vertikalen und horizontalen Koordinaten in Bewegung gesetzt, wobei sich Bewegungsrichtungen wiederholen, aber in ihren Geschwindigkeiten fortlaufend variiert werden.
Sowohl die Dauer der jeweiligen Bewegungsabläufe als auch deren Geschwindigkeit errechnet sich aus Teilern oder Vielfachen der oben beschriebenen geometrischen Grundmaße.
Aus einem ähnlich mathematischen Prinzip kreiert sich auch der elektronische Soundtrack, den Bernhard Lang gestaltete. Auch hier wurde zuerst ein feststehendes Frequenzraster erstellt, das in seinen Proportionen der Fläche des Bildraumes entspricht. Dieser Frequenzraum wird vom Komponisten dann durch eine Glissandi-artige Modulation der Tonhöhe auf der primären und der Impulsdichte auf der sekundären Ebene quasi diagonal durchmessen.
Zwei Frequenzkurven stehen dabei im akustischen Wechselspiel: Ein elektronisches Wummern im tieferen Frequenzbereich unterliegt verschiedenen Beschleunigungen während ein sinusähnlicher Ton kontinuierlich an- und wieder abschwillt. Die Algorithmen, nach denen sich die Modulation der Frequenzen bestimmt, errechnen sich wieder aus Teilern oder Vielfachen der primären Rastergrundmaße.
Im Rekurs auf das Raster als das Bild und Ton bestimmende Element eröffnet A1B2C3 Referenz-Überlegungen auf zwei unterschiedlichen Ebenen. Die eine wurde bereits weiter oben kurz angerissen, nämlich jene bezüglich der technischen und daher medieninhärenten Grundbedingung im Aufbau des Videobildes als Raster. In einer zweiten Bewegung verweist das Raster aber auch auf eine Tradition der Moderne, die es in das Zentrum künstlerischer Praxis rückte und damit radikal die Autonomie der Kunst von Natur, Mimesis und realer Welt proklamierte (Kubismus, De Stijl, Mondrian, Malevich, Op-Art, Richter,...).
Schon in einer früheren Videoarbeit von Pfaffenbichler und Schreiber 36 (2001) gab es deutliche Referenzen an die abstrakte Malerei der Moderne, im Besonderen an die Farbtafeln Gerhard Richters aus den 1960er Jahren. Auch 36 ist einem strukturellen Zugang zum Medium verpflichtet, ebenso wie in A1B2C3 sind die Erscheinungen, Bewegungen und die Dauer der Elemente mathematischen Ableitungen unterworfen. Während es in 36 aber noch visuelle Inhalte in Form grafischer Bausteine zu erkennen gibt, wird in A1B2C3 die Reduktion noch einen Schritt weiter getrieben.
Das letzte visuelle Element in A1B2C3 bildet also jenes weiße Gitter, das das Blau des Monitors in identische Rechtecke untergliedert.
Der Blue Screen, der den Hintergrund stellt, trägt aber gewissermaßen noch die Idee eines visuellen Inhalts in sich. So dient in der Film- und Fernsehtechnik ein Blue Screen dazu, Gegenstände oder Personen nachträglich vor einen Hintergrund zu setzen. In der Computerwelt kennt man den Blue Screen als plötzliche Erscheinungsform des Bildschirms im Falle schwerwiegender Systemfehler bei Windows-Rechnern, wenn die Benutzeroberfläche des Computers suspendiert und durch ein monochromes Blau ersetzt wird. Unter diesen beiden Gesichtspunkten ist ein Blue Screen also sowohl ein vor-dem-Bild als auch ein nach-dem-Bild.
Mit der Animation des Rasters folgt es seiner Logik einer zentrifugalen Existenz, also eines letztlich in alle Richtungen ins Unendliche ausgedehnten Gitters, wobei der auf dem Bildschirm (innerhalb des Rahmens) abgebildete Teil jeweils immer nur ein Fragment des Ganzen zu einem bestimmten Augenblick zeigt. Insofern operiert das Raster nach außen und zwingt uns, eine Welt jenseits des Rahmens anzuerkennen. Zugleich bleibt es im Sinne der auf die Rasterhaftigkeit des technischen Mediums bezogenen Reflexivität von zentripetaler Existenz, bildet also den Raum innerhalb des Rahmens (den Monitor und seine Funktionalität als System von horizontalen Linien und vertikalen Pixel) auf sich selbst ab.
Die Animation der parallelen Linien des rechtwinkeligen Gitters bewirkt schließlich mit zunehmender Geschwindigkeit Effekte, die einerseits mit dem Ausloten der technischen Grenzen der Darstellbarkeit zusammenhängen als auch mit der physiologischen Bedingtheit unserer visuellen Wahrnehmung. So entstehen auf dem Schirm Verdoppelungen der Linien als Nachbilder und bisweilen lösen sich die Linien in einem Flimmern und Flickern sich überlagernder Lichtimpulse auf.
Die Wechsel in den Bewegungsrichtungen, die Änderungen in der Geschwindigkeit der sich wiederholenden Scans, den das Raster durchführt impliziert die Idee einer automatisierten selbst-regulativen Maschine, die ihren eigenen inhärenten Algorithmen folgt (a1 -> b2 -> c3 -> ...) und für uns nicht nachvollziehbare Rechenoperationen durchführt (da wir die Funktionen von a, b ,c ,... nicht kennen).
In A1B2C3 erscheint es also so, als ob eine digitale Rechenmaschine eine (inzwischen) leere Datenbank nach möglicherweise doch noch vorhandenen, letzten identifizierbaren und darstellbaren, konkreten Bildinhalten durchforstet.
Gerald Weber
courtesy Edition Medienturm Graz
Wassily Kandinskys Satz, dass der Punkt der erste Zusammenstoß des Werkzeugs mit der Fläche sei und diese erst befruchte, gilt wohl auch für die Urszene der Computergrafik: Ein Kathodenstrahl trifft auf die Phosphorschicht einer Bildröhre und erzeugt einen leuchtenden Punkt. Als Mitte des 20. Jahrhunderts zum ersten Mal Punkte auf dem Screen einer Bildröhre, der so genannten Williams Tube aufleuchteten, ging es allerdings vorerst nicht darum, Bilder zu schaffen, sondern darum, die Bildröhren als schnelle und billige Arbeitsspeicher anzuwenden. Diese selbst waren in ein Raster aufgeteilt, an dessen einzelne Koordinaten der Elektronenstrahl Punkte oder eben keine Punkte setzte und damit singuläre Informationen speicherte. So wäre ein laufendes Programm als quadratisches Feld von einer Vielzahl an Punkten erschienen, die in mysteriösen Mustern aufleuchteten und verloschen, also so etwas wie ein abstraktes digitales Bewegungsbild lieferten.
Seit damals hat sich in der digitalen Bildgenerierung natürlich vieles getan (vorangetrieben von der Idee einer möglichst realen, natürlichen Abbildung konkreter Wirklichkeit), die grundsätzliche Komponente des Monitors als ein (unsichtbares) Raster-Feld, in dem sich mit nicht wahrnehmbarer Geschwindigkeit Lichtpunkte in unterschiedlicher Intensität entlang von horizontalen Linien auf- und wieder abbauen, blieb freilich erhalten.
Die Versuchsanordnung von Norbert Pfaffenbichlers und Lotte Schreibers knapp fünf Minuten dauernden Video A1B2C3 erscheint auf den ersten Blick denkbar einfach: ein monochromer Blue Screen wird mit einem rechtwinkeligen, weißen Gitter überlegt. Die daraus entstandenen Rechtecke entsprechen proportional dem Seitenverhältnis des Monitorbildes im gängigen Digitalvideo-Standard, also einem Maß von 720 x 576 Pixel.
Dieses Raster wird nun nach einem vorher festgelegten arithmetischen System jeweils abwechselnd entlang der vertikalen und horizontalen Koordinaten in Bewegung gesetzt, wobei sich Bewegungsrichtungen wiederholen, aber in ihren Geschwindigkeiten fortlaufend variiert werden.
Sowohl die Dauer der jeweiligen Bewegungsabläufe als auch deren Geschwindigkeit errechnet sich aus Teilern oder Vielfachen der oben beschriebenen geometrischen Grundmaße.
Aus einem ähnlich mathematischen Prinzip kreiert sich auch der elektronische Soundtrack, den Bernhard Lang gestaltete. Auch hier wurde zuerst ein feststehendes Frequenzraster erstellt, das in seinen Proportionen der Fläche des Bildraumes entspricht. Dieser Frequenzraum wird vom Komponisten dann durch eine Glissandi-artige Modulation der Tonhöhe auf der primären und der Impulsdichte auf der sekundären Ebene quasi diagonal durchmessen.
Zwei Frequenzkurven stehen dabei im akustischen Wechselspiel: Ein elektronisches Wummern im tieferen Frequenzbereich unterliegt verschiedenen Beschleunigungen während ein sinusähnlicher Ton kontinuierlich an- und wieder abschwillt. Die Algorithmen, nach denen sich die Modulation der Frequenzen bestimmt, errechnen sich wieder aus Teilern oder Vielfachen der primären Rastergrundmaße.
Im Rekurs auf das Raster als das Bild und Ton bestimmende Element eröffnet A1B2C3 Referenz-Überlegungen auf zwei unterschiedlichen Ebenen. Die eine wurde bereits weiter oben kurz angerissen, nämlich jene bezüglich der technischen und daher medieninhärenten Grundbedingung im Aufbau des Videobildes als Raster. In einer zweiten Bewegung verweist das Raster aber auch auf eine Tradition der Moderne, die es in das Zentrum künstlerischer Praxis rückte und damit radikal die Autonomie der Kunst von Natur, Mimesis und realer Welt proklamierte (Kubismus, De Stijl, Mondrian, Malevich, Op-Art, Richter,...).
Schon in einer früheren Videoarbeit von Pfaffenbichler und Schreiber 36 (2001) gab es deutliche Referenzen an die abstrakte Malerei der Moderne, im Besonderen an die Farbtafeln Gerhard Richters aus den 1960er Jahren. Auch 36 ist einem strukturellen Zugang zum Medium verpflichtet, ebenso wie in A1B2C3 sind die Erscheinungen, Bewegungen und die Dauer der Elemente mathematischen Ableitungen unterworfen. Während es in 36 aber noch visuelle Inhalte in Form grafischer Bausteine zu erkennen gibt, wird in A1B2C3 die Reduktion noch einen Schritt weiter getrieben.
Das letzte visuelle Element in A1B2C3 bildet also jenes weiße Gitter, das das Blau des Monitors in identische Rechtecke untergliedert.
Der Blue Screen, der den Hintergrund stellt, trägt aber gewissermaßen noch die Idee eines visuellen Inhalts in sich. So dient in der Film- und Fernsehtechnik ein Blue Screen dazu, Gegenstände oder Personen nachträglich vor einen Hintergrund zu setzen. In der Computerwelt kennt man den Blue Screen als plötzliche Erscheinungsform des Bildschirms im Falle schwerwiegender Systemfehler bei Windows-Rechnern, wenn die Benutzeroberfläche des Computers suspendiert und durch ein monochromes Blau ersetzt wird. Unter diesen beiden Gesichtspunkten ist ein Blue Screen also sowohl ein vor-dem-Bild als auch ein nach-dem-Bild.
Mit der Animation des Rasters folgt es seiner Logik einer zentrifugalen Existenz, also eines letztlich in alle Richtungen ins Unendliche ausgedehnten Gitters, wobei der auf dem Bildschirm (innerhalb des Rahmens) abgebildete Teil jeweils immer nur ein Fragment des Ganzen zu einem bestimmten Augenblick zeigt. Insofern operiert das Raster nach außen und zwingt uns, eine Welt jenseits des Rahmens anzuerkennen. Zugleich bleibt es im Sinne der auf die Rasterhaftigkeit des technischen Mediums bezogenen Reflexivität von zentripetaler Existenz, bildet also den Raum innerhalb des Rahmens (den Monitor und seine Funktionalität als System von horizontalen Linien und vertikalen Pixel) auf sich selbst ab.
Die Animation der parallelen Linien des rechtwinkeligen Gitters bewirkt schließlich mit zunehmender Geschwindigkeit Effekte, die einerseits mit dem Ausloten der technischen Grenzen der Darstellbarkeit zusammenhängen als auch mit der physiologischen Bedingtheit unserer visuellen Wahrnehmung. So entstehen auf dem Schirm Verdoppelungen der Linien als Nachbilder und bisweilen lösen sich die Linien in einem Flimmern und Flickern sich überlagernder Lichtimpulse auf.
Die Wechsel in den Bewegungsrichtungen, die Änderungen in der Geschwindigkeit der sich wiederholenden Scans, den das Raster durchführt impliziert die Idee einer automatisierten selbst-regulativen Maschine, die ihren eigenen inhärenten Algorithmen folgt (a1 -> b2 -> c3 -> ...) und für uns nicht nachvollziehbare Rechenoperationen durchführt (da wir die Funktionen von a, b ,c ,... nicht kennen).
In A1B2C3 erscheint es also so, als ob eine digitale Rechenmaschine eine (inzwischen) leere Datenbank nach möglicherweise doch noch vorhandenen, letzten identifizierbaren und darstellbaren, konkreten Bildinhalten durchforstet.
Gerald Weber
courtesy Edition Medienturm Graz
"The Grid" by Gerald Weber (english)
The Grid
Wassily Kandinskys statement that the point would be the first clash of the tool with the surface, bringing it thus to fruition, is probably also valid for the initial sequence of computer graphics: one cathode ray meets the phosphor coating of a picture tube and generates a shining spot. When, in the middle of the twentieth century, points began to flash on the screen of a picture tube for the first time, named Williams Tube, however, it was not about the creation of images, but about the use of picture tubes as swift and cheap main storage; these were separated into a grid of which the singular coordinates were provided or not provided with points by the electron beam, with the intention to save singular information. A running program would have appeared as a square field of numerous points that form mysterious patterns while flashing and extinguishing, thus delivering a kind of an abstract, digital moving image.
Since then, digital image production has advanced (pushed by the idea of a preferably real, natural picturing of a concrete reality). The basic component of the monitor as an (invisible) grid wherein light spots arrange and fade again at a hardly realizable speed and varying in intensity alongside horizontal lines, has certainly survived.
The test arrangement of Norbert Pfaffenbichlers and Lotte Schreibers video A1B2C3 that lasts not more than five minutes, appears at first sight imaginably simple: a square, white grid is superimposed on a monochrome blue screen. The proportions of the resulting squares correspond to the aspect ratio of the monitor screen, following the standard digital video measurements of 720 x 576 pixels.
This grid is put in motion, according to a previously fixed arithmetical system, alternately alongside the vertical and horizontal coordinates, whereas the directions of motion repeat. Their speed, however, continuously varies.
The period of the respective motion sequences as well as their rate is calculated from factors or multiples of the above described basic geometrical measurements.
Bernhard Langs accompanying soundtrack derives from a similar mathematical principle. He initially fixes a frequency grid, of which the proportions correspond to the surface of the image space. The composer diagonally measures this frequency space by means of a Glissandi-like modulation of the tone pitch on a primary level and of the signal density on a secondary level.
Two frequency responses acoustically interact: an electronic humming that equates the deeper frequency range is subject to different accelerations, while a sine-like sound permanently swells and subsides again. The algorithms which are the basis for the modulation of the frequencies are again calculated from the factors or multiples of the primary basic measurements of the grid.
When recurring to the grid as a means to define image and sound, A1B2C3 opens up referential points on two different levels: one was already addressed, namely the one regarding the technical and thus media-immanent basic condition with respect to the structure of the video image as grid. In a second movement, the grid, however, also refers to the tradition of modernism, which made it take centre stage in the field of artistic practise, thus radically proclaiming the autonomy of art vis-à-vis nature, mimesis and the real world (Cubism, De Stijl, Mondrian, Malevich, Op-Art, Richter,...).
Already in an early video work of Pfaffenbichler and Schreiber 36 (2001) , explicit references were made towards abstract modernist painting, particularly to Gerhard Richters colour charts of the 1960s. 36 is also bound to a structural approach towards the medium, as in A1B2C3, appearances, motion and duration of the elements are subject to mathematical derivatives. Whereas 36 still reveals visual contents in the form of graphical components, in A1B2C3, the reduction is taken one step further.
The last visual element in A1B2C3 thus consists of the white grid which subdivides the blue of the monitor into identical squares.
The blue screen that functions as background, however, still contains the idea of a visual content. In the realm of film technology and television engineering, for example, a blue screen serves as background in front of which objects and persons are subsequently placed. In the realm of computers, the blue screen is the popular name for the screen displayed by Microsofts Windows operating system. When it cannot recover from a serious system error, the graphical user interface is cancelled and replaced by a monochrome blue. Bearing in mind these two examples, the blue screen can thus be considered both a before the image and an after the image.
With the animation, the grid follows its logic of a centrifugal existence, thus, ultimately, of a grid that expands whichever direction it might be, ad infinitum. The shown part on the screen (within the frame) stays only a fragment of the entirety at a particular moment. Insofar, the grid operates outwards and forces us to acknowledge a world beyond the frames. At the same time, its existence remains centripetal in the sense of the reflexiveness concerning the grid-likeness of the technical medium, thus directing back the space within the frames (the monitor and its functionality as system of horizontal lines and vertical pixels) on itself.
Speeding up the animation of the parallel lines which compose the square grid finally causes effects that, on the one hand, are connected to the sounding of the technical boundaries of representability, but also to the physiological relativity of our visual perception; the duplications of the lines that evolve on the screen are after-images and sometimes the lines dissolve due to a flickering of overlapping light signals.
The raster arrangement of motion, direction and rate of the repeated scans implicates the idea of an automated self-regulative machine, which follows its own immanent algorithms (a1 -> b2 -> c3 -> ...) and carries out arithmetic operations that we do not understand (since we are not aware of the function of a, b ,c ...).
In A1B2C3 it thus seems as if a digital computer scans a (meanwhile) empty data base for the last possibly still intact, identifiable and illustratable, concrete image contents.
Gerald Weber / courtesy Edition Medienturm Graz
Wassily Kandinskys statement that the point would be the first clash of the tool with the surface, bringing it thus to fruition, is probably also valid for the initial sequence of computer graphics: one cathode ray meets the phosphor coating of a picture tube and generates a shining spot. When, in the middle of the twentieth century, points began to flash on the screen of a picture tube for the first time, named Williams Tube, however, it was not about the creation of images, but about the use of picture tubes as swift and cheap main storage; these were separated into a grid of which the singular coordinates were provided or not provided with points by the electron beam, with the intention to save singular information. A running program would have appeared as a square field of numerous points that form mysterious patterns while flashing and extinguishing, thus delivering a kind of an abstract, digital moving image.
Since then, digital image production has advanced (pushed by the idea of a preferably real, natural picturing of a concrete reality). The basic component of the monitor as an (invisible) grid wherein light spots arrange and fade again at a hardly realizable speed and varying in intensity alongside horizontal lines, has certainly survived.
The test arrangement of Norbert Pfaffenbichlers and Lotte Schreibers video A1B2C3 that lasts not more than five minutes, appears at first sight imaginably simple: a square, white grid is superimposed on a monochrome blue screen. The proportions of the resulting squares correspond to the aspect ratio of the monitor screen, following the standard digital video measurements of 720 x 576 pixels.
This grid is put in motion, according to a previously fixed arithmetical system, alternately alongside the vertical and horizontal coordinates, whereas the directions of motion repeat. Their speed, however, continuously varies.
The period of the respective motion sequences as well as their rate is calculated from factors or multiples of the above described basic geometrical measurements.
Bernhard Langs accompanying soundtrack derives from a similar mathematical principle. He initially fixes a frequency grid, of which the proportions correspond to the surface of the image space. The composer diagonally measures this frequency space by means of a Glissandi-like modulation of the tone pitch on a primary level and of the signal density on a secondary level.
Two frequency responses acoustically interact: an electronic humming that equates the deeper frequency range is subject to different accelerations, while a sine-like sound permanently swells and subsides again. The algorithms which are the basis for the modulation of the frequencies are again calculated from the factors or multiples of the primary basic measurements of the grid.
When recurring to the grid as a means to define image and sound, A1B2C3 opens up referential points on two different levels: one was already addressed, namely the one regarding the technical and thus media-immanent basic condition with respect to the structure of the video image as grid. In a second movement, the grid, however, also refers to the tradition of modernism, which made it take centre stage in the field of artistic practise, thus radically proclaiming the autonomy of art vis-à-vis nature, mimesis and the real world (Cubism, De Stijl, Mondrian, Malevich, Op-Art, Richter,...).
Already in an early video work of Pfaffenbichler and Schreiber 36 (2001) , explicit references were made towards abstract modernist painting, particularly to Gerhard Richters colour charts of the 1960s. 36 is also bound to a structural approach towards the medium, as in A1B2C3, appearances, motion and duration of the elements are subject to mathematical derivatives. Whereas 36 still reveals visual contents in the form of graphical components, in A1B2C3, the reduction is taken one step further.
The last visual element in A1B2C3 thus consists of the white grid which subdivides the blue of the monitor into identical squares.
The blue screen that functions as background, however, still contains the idea of a visual content. In the realm of film technology and television engineering, for example, a blue screen serves as background in front of which objects and persons are subsequently placed. In the realm of computers, the blue screen is the popular name for the screen displayed by Microsofts Windows operating system. When it cannot recover from a serious system error, the graphical user interface is cancelled and replaced by a monochrome blue. Bearing in mind these two examples, the blue screen can thus be considered both a before the image and an after the image.
With the animation, the grid follows its logic of a centrifugal existence, thus, ultimately, of a grid that expands whichever direction it might be, ad infinitum. The shown part on the screen (within the frame) stays only a fragment of the entirety at a particular moment. Insofar, the grid operates outwards and forces us to acknowledge a world beyond the frames. At the same time, its existence remains centripetal in the sense of the reflexiveness concerning the grid-likeness of the technical medium, thus directing back the space within the frames (the monitor and its functionality as system of horizontal lines and vertical pixels) on itself.
Speeding up the animation of the parallel lines which compose the square grid finally causes effects that, on the one hand, are connected to the sounding of the technical boundaries of representability, but also to the physiological relativity of our visual perception; the duplications of the lines that evolve on the screen are after-images and sometimes the lines dissolve due to a flickering of overlapping light signals.
The raster arrangement of motion, direction and rate of the repeated scans implicates the idea of an automated self-regulative machine, which follows its own immanent algorithms (a1 -> b2 -> c3 -> ...) and carries out arithmetic operations that we do not understand (since we are not aware of the function of a, b ,c ...).
In A1B2C3 it thus seems as if a digital computer scans a (meanwhile) empty data base for the last possibly still intact, identifiable and illustratable, concrete image contents.
Gerald Weber / courtesy Edition Medienturm Graz
Orig. Titel
a1b2c3
a1b2c3
Jahr
2006
2006
Land
Österreich
Österreich
Länge
4 min 48 sek
4 min 48 sek